130 research outputs found

    Energy Saving and Virtualization Technologies in Switching

    Get PDF
    Switching is the key functionality for many devices like electronic Router and Switch, optical Router, Network on Chips (NoCs) and so on. Basically, switching is responsible for moving data unit from one port/location to another (or multiple) port(s)/location(s). In past years, the high capacity, low delay were the main concerns when designing high-end switching unit. As new demands, requests and technologies emerge, flexibility and low power cost switching design become to weight the same as throughput and delay. On one hand, highly flexible (i.e, programming ability) switching can cope with variable needs stem from new applications (i.e, VoIP) and popular user behavior (i.e, p2p downloading); on the other hand, reduce the energy and power dissipation for switching could not only save bills and build echo system but also expand components life time. Many research efforts have been devoted to increase switching flexibility and reduce its power cost. In this thesis work, we consider to exploit virtualization as the main technique to build flexible software router in the first part, then in the second part we draw our attention on energy saving in NoC (i.e, a switching fabric designed to handle the on chip data transmission) and software router. In the first part of the thesis, we consider the virtualization inside Software Routers (SRs). SR, i.e, routers running in commodity Personal Computers (PCs), become an appealing solution compared to traditional Proprietary Routing Devices (PRD) for various reasons such as cost (the multi-vendor hardware used by SRs can be cheap, while the equipment needed by PRDs is more expensive and their training cost is higher), openness (SRs can make use of a large number of open source networking applications, while PRDs are more closed) and flexibility. The forwarding performance provided by SRs has been an obstacle to their deployment in real networks. For this reason, we proposed to aggregate multiple routing units that form an powerful SR known as the Multistage Software Router (MSR) to overcome the performance limitation for a single SR. Our results show that the throughput can increase almost linearly as the number of the internal routing devices. But some other features related to flexibility (such as power saving, programmability, router migration or easy management) have been investigated less than performance previously. We noticed that virtualization techniques become reality thanks to the quick development of the PC architectures, which are now able to easily support several logical PCs running in parallel on the same hardware. Virtualization could provide many flexible features like hardware and software decoupling, encapsulation of virtual machine state, failure recovery and security, to name a few. Virtualization permits to build multiple SRs inside one physical host and a multistage architecture exploiting only logical devices. By doing so, physical resources can be used in a more efficient way, energy savings features (switching on and off device when needed) can be introduced and logical resources could be rented on-demand instead of being owned. Since virtualization techniques are still difficult to deploy, several challenges need to be faced when trying to integrate them into routers. The main aim of the first part in this thesis is to find out the feasibility of the virtualization approach, to build and test virtualized SR (VSR), to implement the MSR exploiting logical, i.e. virtualized, resources, to analyze virtualized routing performance and to propose improvement techniques to VSR and virtual MSR (VMSR). More specifically, we considered different virtualization solutions like VMware, XEN, KVM to build VSR and VMSR, being VMware a closed source solution but with higher performance and XEN/KVM open source solutions. Firstly we built and tested each single component of our multistage architecture (i.e, back-end router, load balancer )inside the virtual infrastructure, then and we extended the performance experiments with more complex scenarios like multiple Back-end Router (BR) or Load Balancer (LB) which cooperate to route packets. Our results show that virtualization could introduce 40~\% performance penalty compare with the hardware only solution. Keep the performance limitation in mind, we developed the whole VMSR and we obtained low throughput with 64B packet flow as expected. To increase the VMSR throughput, two directions could be considered, the first one is to improve the single component ( i.e, VSR) performance and the other is to work from the topology (i.e, best allocation of the VMs into the hardware ) point of view. For the first method, we considered to tune the VSR inside the KVM and we studied closely such as Linux driver, scheduler, interconnect methodology which could impact the performance significantly with proper configuration; then we proposed two ways for the VMs allocation into physical servers to enhance the VMSR performance. Our results show that with good tuning and allocation of VMs, we could minimize the virtualization penalty and get reasonable throughput for running SRs inside virtual infrastructure and add flexibility functionalities into SRs easily. In the second part of the thesis, we consider the energy efficient switching design problem and we focus on two main architecture, the NoC and MSR. As many research works suggest, the energy cost in the Communication Technologies ( ICT ) is constantly increasing. Among the main ICT sectors, a large portion of the energy consumption is contributed by the telecommunication infrastructure and their devices, i.e, router, switch, cell phone, ip TV settle box, storage home gateway etc. More in detail, the linecards, links, System on Chip (SoC) including the transmitter/receiver on these variate devices are the main power consuming units. We firstly present the work on the power reduction of the data transmission in SoC, which is carried out by the NoC. NoC is an approach to design the communication subsystem between different Processing Units (PEs) in a SoC. PEs could be different elements such as CPU, memory, digital signal/analog signal processor etc. Different PEs performs specific tasks depending on the applications running on the chip. Different tasks need to exchange data information among each other, thus flits ( chopped packet with limited header information ) are generated by PEs. The flits are injected into the NoC by the proper interface and routed until reach the destination PEs. For the whole procedure, the NoC behaves as a packet switch network. Studies show that in general the information processing in the PEs only consume 60~\% energy while the remaining 40~\% are consumed by the NoC. More importantly, as the current network designing principle, the NoC capacity is devised to handle the peak load. This is a clear sign for energy saving when the network load is low. In our work, we considered to exploit Dynamic Voltage and Frequency Scaling (DVFS) technique, which can jointly decrease or increase the system voltage and frequency when necessary, i.e, decrease the voltage and frequency at low load scenario to save energy and reduce power dissipation. More precisely, we studied two different NoC architectures for energy saving, namely single plane chip and multi-plane chip architecture. In both cases we have a very strict constraint to be that all the links and transmitter/receivers on the same plane work at the same frequency/voltage to avoid synchronization problem. This is the main difference with many existing works in the literature which usually assume different links can work at different frequency, that is hard to be implemented in reality. For the single plane NoC, we exploited different routing schemas combined with DVFS to reduce the power for the whole chip. Our results haven been compared with the optimal value obtained by modeling the power saving formally as a quadratic programming problem. Results suggest that just by using simple load balancing routing algorithm, we can save considerable energy for the single chip NoC architecture. Furthermore, we noticed that in the single plane NoC architecture, the bottleneck link could limit the DVFS effectiveness. Then we discovered that multiplane NoC architecture is fairly easy to be implemented and it could help with the energy saving. Thus we focus on the multiplane architecture and we found out that DVFS could be more efficient when we concentrate more traffic into one plane and send the remaining flows to other planes. We compared load concentration and load balancing with different power modeling and all simulation results show that load concentration is better compared with load balancing for multiplan NoC architecture. Finally, we also present one of the the energy efficient MSR design technique, which permits the MSR to follow the day-night traffic pattern more efficiently with our on-line energy saving algorithm

    A new secondary instability phenomenon of parametric sloshing

    Get PDF
    This paper reports on a new secondary instability phenomenon of parametric sloshing. Faraday first experimentally discovered the (1/2 sub-harmonic) parametric sloshing phenomenon in 1831. The parametric instability starts from a small disturbance on the free fluid surface, and then the sloshing amplitude of fluid increases exponentially and finally reaches a steady-state limit cycle oscillation. This parametric instability is called the first (linear) instability. The parametric sloshing experiment of this study discovers that in the case of the parametric excitation unchanged, the free fluid surface that is in a limit cycle oscillation might undergo a secondary instability. Under this circumstance, the sloshing amplitude of free surface increases sharply. The consequence is catastrophic – the fluid is splashed out of the tank. During the secondary instability, the sloshing mode (or energy) is transferred from the third mode to the first mode. The secondary instability, which is different from the first instability, is a nonlinear unstable process. The mechanism of the secondary instability is needed a further study

    Analysis of gray markets in differentiated duopoly

    Get PDF
    In recent years, gray markets have become a significant phenomenon in the business practice. This paper investigates the gray markets issues in differentiated duopoly case by considering quantity competition among firms. We develop a game-theoretic model and provide equilibrium results for three scenarios, i.e. the benchmark scenario ‘no gray market’, the scenario ‘parallel imports act as a buffer against a follower’s product’ and the scenario ‘gray markets stimulate the competition’. By the analysis of the equilibrium results, some important managerial insights are obtained. Finally, by comparison of the equilibrium results among different scenarios, we study the impact of gray markets on manufacturers’ optimal strategies and profits in differentiated duopoly

    OpenFlow driven ethernet traffic analysis

    Get PDF
    Software Defined Networking (SDN) is a new networking paradigm that permits to slice network infrastructures. An example of SDN is the OpenFlow framework, where the control plane runs on a separate device, called controller, that manages data forwarding switches. The OpenFlow protocol ensures communications between OpenFlow switches and the OpenFlow controller. Before widely deploying OpenFlow based networks, scalability and performance of such networks should be studied and better understood. In this paper, the scalability of NOX, one of the most popular OpenFlow controller, is analyzed through both simulation and lab measurements. We perform an Ethernet trace analysis on the controller by defining flow characteristics as would be seen by an OpenFlow controller. We study the potential trace impact on an OpenFlow controller, analyzing among others, the number of flows, flow inter arrival times, traffic volumes and flow size distribution. Our results permit to discuss the feasibility of running OpenFlow networks with a single commodity PC as the controller in a mid-size campus network

    Association between Virulence Factors and TRAF1/4-1BB/Bcl-xL

    Get PDF
    Objective. CagA+/vacAs1+/vacAm1+ Helicobacter pylori upregulates the expression of tumor necrosis factor receptor–associated factor 1 (TRAF1), tumor necrosis factor receptor superfamily member 9 (4-1BB), and B-cell lymphoma-extra large (Bcl-xL) in human gastric epithelial cells. We investigated the correlation between cagA/vacAs1/vacAm1 and TRAF1/4-1BB/Bcl-xL expression in gastric mucosal tissue of patients with gastric disorders. Methods. We collected gastric mucosa samples from 35 chronic, nonatrophic gastritis (CG) patients, 41 atrophic gastritis patients, 44 intestinal metaplasia with atypical hyperplasia (IM) patients, and 28 gastric carcinoma (Ca) patients. The expression of  TRAF1, 4-1BB, and Bcl-xL was determined using western blotting. The expression of cagA, vacAs1, and vacAm1 in H. pylori was examined with polymerase chain reaction. Results. The expression of TRAF1, 4-1BB, and Bcl-xL was significantly upregulated in IM and Ca patients (P<0.05 compared with CG). There were more cases of cagA+/vacAs1+/vacAm1+ H. pylori infection in samples with elevated TRAF1, 4-1BB, or Bcl-xL expression (P<0.05). Additionally, there were a remarkably large number of samples with upregulated TRAF1/4-1BB/Bcl-xL expression in cases of cagA+/vacAs1+/vacAm1+ H. pylori infection (44 cases, 67.7%; P<0.05). Conclusions. The pathogenesis of IM and Ca may be promoted by cagA+/vacAs1+/vacAm1+ H. pylori, possibly via upregulated TRAF1, 4-1BB, and Bcl-xL in gastric mucosal tissue

    Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides

    Get PDF
    The phase-matching condition is a key aspect in nonlinear wavelength conversion processes, which requires the momenta of the photons involved in the processes to be conserved. Conventionally, nonlinear phase matching is achieved using either birefringent or periodically poled nonlinear crystals, which requires careful dispersion engineering and is usually narrowband. In recent years, metasurfaces consisting of densely packed arrays of optical antennas have been demonstrated to provide an effective optical momentum to bend light in arbitrary ways. Here, we demonstrate that gradient metasurface structures consisting of phased array antennas are able to circumvent the phase-matching requirement in on-chip nonlinear wavelength conversion. We experimentally demonstrate phase-matching-free second harmonic generation over many coherent lengths in thin film lithium niobate waveguides patterned with the gradient metasurfaces. Efficient second harmonic generation in the metasurface-based devices is observed over a wide range of pump wavelengths (λ = 1580-1650 nm)

    Isolation of Potential Photosynthetic N\u3csub\u3e2\u3c/sub\u3e-Fixing Microbes from Topsoil of Native Grasslands in South Dakota

    Get PDF
    Nitrogen fertilizer is one of the most limiting factors and costly inputs in agriculture production. Current fossil fuel-dependent ammonia production is both energy intensive and environmentally damaging. An economically practical and environmentally friendly solution for the production of ammonia is urgently needed. Solar-powered N2-fixing cyanobacteria provide a unique opportunity and promise for applications in agriculture compared to all other N2-fixing bacteria that cannot use solar energy. Isolation of nitrogen-fixing microbes from the topsoil of native grasslands may have the potential to use them in crop fields as living ammonia factories. This may be a mechanism to free farmers from heavy reliance on fossil fuels-dependent chemical nitrogen fertilizers and to improve soil health for sustainable agriculture. To screen for solar-powered N2-fixing cyanobacteria in topsoil of native grasslands in South Dakota, we collected 144 topsoil samples from several native grasslands. Six photosynthetic microbial strains were isolated that are capable of growing well autotrophically in a nitrogen-free medium, suggesting that these six microbial strains have the ability to fix N2. They were assigned the names: Xu15, Xu81, Xu86, Xu111, Xu141, and WW3. Based on cell morphology and its 18S rRNA gene sequence that we obtained, strain Xu15 was reassigned as Chloroidium saccharophilum Xu15, a common terrestrial coccoid green alga. An acetylene reduction assay detected substantial ethylene production, suggesting nitrogenase activity occurrences in cultures Xu81 and Xu15. The other four are in the process of purification for testing their nitrogenase activity. Xu81, Xu111 and Xu141 are probably unicellular microalga, while WW3 and Xu86 are likely filamentous cyanobacteria. Future research will focus on developing these validated N2-fixing microbes as in situ living ammonia factories in crop fields
    corecore